File: //usr/lib64/python3.6/__pycache__/numbers.cpython-36.pyc
3
  \(  �               @   s�   d Z ddlmZmZ dddddgZG dd� ded	�ZG d
d� de�Zeje� G dd� de�Z	e	je
� G dd� de	�ZG d
d� de�Zeje
� dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
TODO: Fill out more detailed documentation on the operators.�    )�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc               @   s   e Zd ZdZf ZdZdS )r   z�All numbers inherit from this class.
    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    N)�__name__�
__module__�__qualname__�__doc__�	__slots__�__hash__� r   r   �/usr/lib64/python3.6/numbers.pyr      s   )�	metaclassc               @   s�   e Zd ZdZf Zedd� �Zdd� Zeedd� ��Z	eedd	� ��Z
ed
d� �Zedd
� �Zedd� �Z
edd� �Zdd� Zdd� Zedd� �Zedd� �Zedd� �Zedd� �Zedd� �Zed d!� �Zed"d#� �Zed$d%� �Zed&d'� �Zd(S ))r   aa  Complex defines the operations that work on the builtin complex type.
    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.
    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    c             C   s   dS )z<Return a builtin complex instance. Called for complex(self).Nr   )�selfr   r   r   �__complex__-   s    zComplex.__complex__c             C   s   | dkS )z)True if self != 0. Called for bool(self).r   r   )r   r   r   r   �__bool__1   s    zComplex.__bool__c             C   s   t �dS )zXRetrieve the real component of this number.
        This should subclass Real.
        N)�NotImplementedError)r   r   r   r   �real5   s    zComplex.realc             C   s   t �dS )z]Retrieve the imaginary component of this number.
        This should subclass Real.
        N)r   )r   r   r   r   �imag>